P(2)=2x^2+100-800

Simple and best practice solution for P(2)=2x^2+100-800 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for P(2)=2x^2+100-800 equation:



(2)=2P^2+100-800
We move all terms to the left:
(2)-(2P^2+100-800)=0
We get rid of parentheses
-2P^2-100+800+2=0
We add all the numbers together, and all the variables
-2P^2+702=0
a = -2; b = 0; c = +702;
Δ = b2-4ac
Δ = 02-4·(-2)·702
Δ = 5616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5616}=\sqrt{144*39}=\sqrt{144}*\sqrt{39}=12\sqrt{39}$
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{39}}{2*-2}=\frac{0-12\sqrt{39}}{-4} =-\frac{12\sqrt{39}}{-4} =-\frac{3\sqrt{39}}{-1} $
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{39}}{2*-2}=\frac{0+12\sqrt{39}}{-4} =\frac{12\sqrt{39}}{-4} =\frac{3\sqrt{39}}{-1} $

See similar equations:

| 2(3y+4)=20 | | 3+2r=4+r-6+7 | | 2(2x-4)-5x=10 | | 3(1+x)=6 | | U-(-u)-3u=-20 | | 16b2−8b−15=16b2−8b−15=  00 | | W=-w/8 | | 5=83/x | | -9r+-6r-(-17)=-13 | | 4x-64=24 | | 2(5x-10)=3(x-11) | | 30=6-8b | | 2y+3y−4+y+1=−21 | | -7(2k-3)=35 | | 16x+20=4(4x+5) | | -9r+-6r—17=-13 | | 9x+0.4=54.4 | | 1.1n+1.2n-5.4=-10 | | 2/3x+1=3(x-4) | | -(x+3)=-(.8-10)x | | X-0.1x=59.40 | | 4+8=3x | | 9=p/2+8 | | -16n+17n+-3n=-16 | | -4(u+3)=-2u-32 | | b+(-28)=-29 | | -(x+3)=-(8-10)x | | 6-3c=-6 | | 24k+132=12(2k+12) | | 12=w-{-7} | | $36=13n-4n$. | | 2+x=3/4 |

Equations solver categories